Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Physiol Rep ; 9(18): e15044, 2021 09.
Article in English | MEDLINE | ID: covidwho-1436402

ABSTRACT

In humans, exercise-induced thermogenesis is a markedly variable component of total energy expenditure, which had been acutely affected worldwide by COVID-19 pandemic-related lockdowns. We hypothesized that dietary macronutrient composition may affect metabolic adaptation/fuel selection in response to an acute decrease in voluntary activity. Using mice fed short-term high-fat diet (HFD) compared to low-fat diet (LFD)-fed mice, we evaluated whole-body fuel utilization by metabolic cages before and 3 days after omitting a voluntary running wheel in the cage. Short-term (24-48 h) HFD was sufficient to increase energy intake, fat oxidation, and decrease carbohydrate oxidation. Running wheel omission did not change energy intake, but resulted in a significant 50% decrease in total activity and a ~20% in energy expenditure in the active phase (night-time), compared to the period with wheel, irrespective of the dietary composition, resulting in significant weight gain. Yet, while in LFD wheel omission significantly decreased active phase fat oxidation, thereby trending to increase respiratory exchange ratio (RER), in HFD it diminished active phase carbohydrate oxidation. In conclusion, acute decrease in voluntary activity resulted in positive energy balance in mice on both diets, and decreased oxidation of the minor energy (macronutrient) fuel source, demonstrating that dietary macronutrient composition determines fuel utilization choices under conditions of acute changes in energetic demand.


Subject(s)
Diet, Fat-Restricted , Diet, High-Fat , Dietary Fats/administration & dosage , Energy Metabolism , Adaptation, Physiological , Animal Feed , Animal Nutritional Physiological Phenomena , Animals , Dietary Fats/metabolism , Energy Intake , Male , Mice, Inbred C57BL , Nutritional Status , Nutritive Value , Running , Time Factors
2.
Biochem Biophys Res Commun ; 538: 92-96, 2021 01 29.
Article in English | MEDLINE | ID: covidwho-1125278

ABSTRACT

Obesity is a major risk factor for SARS-CoV-2 infection and COVID-19 severity. The underlying basis of this association is likely complex in nature. The host-cell receptor angiotensin converting enzyme 2 (ACE2) and the type II transmembrane serine protease (TMPRSS2) are important for viral cell entry. It is unclear whether obesity alters expression of Ace2 and Tmprss2 in the lower respiratory tract. Here, we show that: 1) Ace2 expression is elevated in the lung and trachea of diet-induced obese male mice and reduced in the esophagus of obese female mice relative to lean controls; 2) Tmprss2 expression is increased in the trachea of obese male mice but reduced in the lung and elevated in the trachea of obese female mice relative to lean controls; 3) in chow-fed lean mice, females have higher expression of Ace2 in the lung and esophagus as well as higher Tmprss2 expression in the lung but lower expression in the trachea compared to males; and 4) in diet-induced obese mice, males have higher expression of Ace2 in the trachea and higher expression of Tmprss2 in the lung compared to females, whereas females have higher expression of Tmprss2 in the trachea relative to males. Our data indicate diet- and sex-dependent modulation of Ace2 and Tmprss2 expression in the lower respiratory tract and esophagus. Given the high prevalence of obesity worldwide and a sex-biased mortality rate, we discuss the implications and relevance of our results for COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/enzymology , Esophagus/enzymology , Lung/enzymology , Obesity/enzymology , SARS-CoV-2/physiology , Serine Endopeptidases/metabolism , Trachea/enzymology , Virus Internalization , Animals , COVID-19/virology , Diet , Esophagus/virology , Female , Lung/virology , Male , Mice , Obesity/virology , Sex Factors , Trachea/virology
SELECTION OF CITATIONS
SEARCH DETAIL